Tetrahedron Letters No. 29, pp 2565 - 2568, 1976. Pergamon Press. Printed in Great Britain.

MULTIPOSITIONAL ISOMERISATION OF FUNCTIONALLY SUBSTITUTED ALKYNES CATALYSED BY POTASSIUM 3-AMINOPROPYLAMIDE

J.C. Lindhoudt, G.L. van Mourik and H.J.J. Pabon*

Unilever Research, Vlaardingen, The Netherlands

(Received in UK 19 May 1976; accepted for publication 7 June 1976)

Straightforward preparation of ω -monoynoic acids requires, in an essential step, coupling of an α, ω -disubstituted alkane with a metal acetylide:

$$HC \equiv CM + X(CH_2)_p Y \longrightarrow HC \equiv C(CH_2)_p Y$$

It is general experience, however, that 1,12-dodecanediol is the longest obtainable α,ω -disubstituted alkane which can still be converted conveniently into an α,ω -disubstituted alkane with different substituents. Since, when Y = C1, malonic ester synthesis can add only two carbon atoms, preparation of ω -monoynoic acids $\text{HC}\equiv\text{C(CH}_2)_{p+1}$ COOH in reasonable yields via this route is in practice limited to p=12. In consequence, synthesis of long-chain ω -monoynoic acids via isomerisation of the corresponding monoynoic acids with the triple bond in a more proximal position according to

$$CH_3(CH_2)_nC=C(CH_2)_mCOOH$$
 \longrightarrow $HC=C(CH_2)_{n+m+1}COOH$

would be a desirable method, since ω -monoynoic acids with n+m+1 > 13 would then become available conveniently and in reasonable yields.

Base-catalysed single-positional isomerisation of 2- and 3-monoynoic acids with potassium hydroxide^{1,2)}, sodium hydroxide³⁾ and sodium amide⁴⁾ are reported to give equilibrium mixtures with the 3-monoynoic acid as the major constituent. This tendency to form equilibrium mixtures is generally encountered in base-catalysed isomerisation of functionally substituted alkynes⁵⁾.

Only in a few instances has isomerisation involving a single migration found synthetic application. Thus Brandsma²⁾ describes the preparation of 2-butyne from 1-butyne in about 100% yield using potassium tert-butoxide in dimethyl sulfoxide, and the conversion of 1-methyl-2-tert-butyl acetylene into neopentyl acetylene in 88-95% yield using potassium amide in liquid ammonia.

Although base-catalysed migration of triple bonds over more than two positions has been attained in low yields with sodium amide⁶⁾, Brown and Yamashita⁷⁾ reported high-yield multipositional isomerisation of various "internal" alkynes to 1-alkynes. When using potassium 3-aminopropyl amide (PAPA) in 1,3-diaminopropane (APA) as a solvent, in a 1.2-1.5 molar ratio to 7-tetradecyne, they could convert the 7-tetradecyne at 15-20°C in 1-2 min into 1-tetradecyne (pure by GLC) in 89% isolated yield.

We submitted 2-hexynoic acid, 4-decynoic acid and tert-butyl-4-decynoate to base-catalysed rearrangement with the PAPA/APA system using a 2.0-3.0 molar ratio of 0.6 mol/1 PAPA in APA for the acids and a 1.2 molar ratio of 0.17 mol/1 base for the ester. In these carboxylic derivatives isomerisation to the terminal position was not observed. The product of the reaction with 2-hexynoic acid consisted for the greater part of a dienoic compound, most probably trans-3,5-hexadienoic acid, and isomerisation of the two other compounds led to a complicated mixture.

When, however, alkyn-1-ols with an internal triple bond were used, alkyn-1-ols with a terminal triple bond could be obtained in good yields. Thus 2- and 3-undecynol were both converted into 10-undecynol in > 80% yield using a 2.0-3.0 molar ratio of a 0.6 mol/l solution of PAPA in APA at room temperature. Only the reaction time (20 h at room temperature) for complete conversion as monitored by GLC was much longer than those reported by Brown for unsubstituted and methyl-substituted alkynes (2-10 min). (See Table 1).

With alkynols the internal triple bond could be shifted over as many as 10 positions; for example, 11-docosynol could be converted into 21-docosynol in 87% isolated yield. Again, allenes and dienes were not observed in the end product. Since alkynols with a terminal triple bond can easily be converted into ω -monoynoic acids (by oxidation or conversion of its halide by nitrile or malonic acid synthesis) multipositional migration of alkynols with an internal triple bond offers a convenient route to long-chain ω -monoynoic acids.

In a typical experiment, 2 ml KH-paraffin suspension (22.5%, ex Alfa Products, for safe handling cf. Ref. 7) was washed three times in an argon atmosphere with 10 ml ether, freshly distilled from LiAlH₄, to remove the paraffin. The 0.397 g KH (9.92 mmol) that was left after vacuum evaporation of the ether, was stirred for 1 h at room temperature with 20 ml dry APA (ex Aldrich, 98%, distilled from BaO, b.p. $43^{\circ}/16$ mm Hg, kept on molecular sieve 0.3 nm). At 0° 1.139 g II-docosyno1 (3.53 mmol) was added; after 1 h at room temperature an $2\frac{1}{2}$ h at $40-50^{\circ}$ the isomerisation was quantitative (GLC):

$$\mathsf{CH}_3(\mathsf{CH}_2)_9 \mathsf{C} \equiv \mathsf{C}(\mathsf{CH}_2)_{10} \mathsf{OH} \quad \xrightarrow{1. \ \mathsf{PAPA}} \quad \mathsf{HC} \equiv \mathsf{C}(\mathsf{CH}_2)_{20} \mathsf{OH}$$

5 ml ${
m H_2^{0}}$ was added dropwise at 0° and the mixture was extracted with ether. The ether layer was

Isomerisation of functionally substituted alkynes with potassium 3-aminopropyl amide (PAPA) in 1,3-diaminopropane (APA)

Compound	Ratioa	Reaction time and temp	Product	Yield (%)
2-Hexynoic acid	2.0; 3.0	20 h 20 $^{\circ}$ + 2 $\frac{1}{2}$ h 45 $^{\circ}$	ь	-
4-Decynoic acid	2.2	48 h 20°	с	-
Buty1-4-decynoate	1.2	1 h 20°	^	-
2-Undecynol	3.0	20 h 20°	10-undecynol	> 80 ^d
3-Undecynol	2.2; 2.8	20 h 20°	10-undecyno1	> 80 ^d
11-Docosynol	2.4	24 h 20°	21~docosynol	∿ 80 ^e
11-Docosynol	3.0	24 h 20°	21-docosyno1	> 90 ^d
11-Docosynol	3.0	$1 h 20^{\circ} + 2\frac{1}{2} h 45^{\circ}$	21-docosynol	87 ^f

aMolar ratio KH: Ynoic compound. bMixture probably with trans-3,5-hexadienoic acid as a major compound. cMixture. dAccording to PMR. eAccording to GLC. fIsolated yield.

acidified with 4 mol/1 HCl, washed acid free with $\rm H_2O$, dried on $\rm Na_2SO_4$ and evaporated to leave 1.055 g solid. Recrystallisation from light petroleum (40-55°) gave 991 mg (87%) 21-docosynol, m.p. 71-75°, purity by GLC 91% (5% MER-2 on Chromosorb WAS-DMCS HP, 80-100 mesh, 2 m, 2 mm int. diam.); C 81.93% (calcd. 81.91), H 13.19% (13.12), O 4.89% (4.96); IR 1000-1070 and 3280 cm⁻¹ (-CH₂OH), 625, 2120 and 3280 cm⁻¹ (HC \equiv C-); PMR (300 MHz; TMS int., CCl₄) δ 1.1-1.6 (mult., 36 H, -(CH₂)_n-), 1.75 (trip., I H, J=2.7 Hz, HC \equiv C-), 2.13 (trip. of trip., 2 H, J=7.0 and 2.7 Hz, -C \equiv CCCH₂-) and 3.53 ppm (trip., 2 H, J=6.5 Hz, -CH₂O-), -OH shifted by dilution; MS m/e 322 (calcd. 322).

At present we are exploring which other functional groups allow the desired multipositional migration.

ACKNOWLEDGEMENT

We thank Miss A. Groenewegen and Messrs. J. de Bruijn, J. Bus, F.L.L. Giesen, G. Jager and W.J. Soeting for measuring and interpreting the spectra.

2568 No. 29

REFERENCES

- 1. E.R.H. Jones, G.H. Whitham and M.C. Whiting, J. Chem. Soc., 1954, 3201.
- 2. L. Brandsma, "Preparative Acetylenic Chemistry", Elsevier, Amsterdam, 1971, p. 143.
- 3. R.J. Bushby and G.H. Whitham, J. Chem. Soc. (B), 1969, 67.
- 4. J. Cymerman Craig and M. Moyle, J. Chem. Soc., 1963, 4402.
- 5. R.J. Bushby, Quart. Rev., 24, 585 (1970).
- 6. M. Bourguel, Ann. Chim. (Paris), 3, 325 (1925).
- 7. C.A. Brown and A. Yamashita, J. Amer. Chem. Soc., <u>97</u>, 891 (1975).